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This work surveys techniques based on classical density functionals for modeling the quantum dispersion of
physisorbed hydrogen at 77 K. Two such techniques are examined in detail. The first is based on the “open ring
approximation” (ORA) of Broukhno et al., and it is compared with a technique based on the semiclassical
approximation of Feynman and Hibbs (FH). For both techniques, a standard classical density functional is used
to model hydrogen molecule-hydrogen molecule (i.e., excess) interactions. The three-dimensional (3D) quan-
tum harmonic oscillator (QHO) system and a model of molecular hydrogen adsorption into a graphitic slit pore
at 77 K are used as benchmarks. Density functional results are compared with path-integral Monte Carlo
simulations and with exact solutions for the 3D QHO system. It is found that neither of the density functional
treatments are entirely satisfactory. However, for hydrogen physisorption studies at 77 K the ORA based
technique is generally superior to the FH based technique due to a fortunate cancellation of errors in the density

functionals used. But, if more accurate excess functionals are used, the FH technique would be superior.
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I. INTRODUCTION

The path-integral (PI) formulation of quantum mechanics
[1] allows equilibrium quantum particles to be represented as
unusual classical ring polymers. This mapping converges to
the exact quantum mechanical result in the limit that n, the
number of sites on a single ring-polymer ring, tends to infin-
ity. This ring-polymer representation is very convenient and
invites [2,3] the techniques of classical statistical mechanics
to be used to solve some quantum problems.

Path integral simulations, both Monte Carlo (PI-MC) and
molecular dynamics (PI-MD), are popular in this context and
provide accurate information that are in principle exact (to
within statistical error) for a given n. But these methods can
be computationally demanding, especially for large n. So,
theoretical alternatives to simulation are often useful. In the
field of classical fluids density functional theory (DFT) is a
powerful tool with a wide range of applications, including
simple fluids, polymers, colloids, etc. For situations with sig-
nificant symmetry, for example those involving spherical
particles adsorbed into slit or cylindrical pores, etc., DFT
calculations can be up to several orders of magnitude more
efficient, sometimes without significant loss of accuracy,
compared to simulation. Hard spheres in slit pores are a good
example here; hard-sphere DFTs are often solved in a few
seconds on a desktop PC, whereas corresponding MC simu-
lations might take several minutes to obtain a satisfactory
level of precision. Path-integral simulations are more de-
manding still. So DFT is an attractive technique, not only for
gaining fundamental theoretical understanding, where abso-
lute accuracy is not essential, but also for engineering appli-
cations (optimization studies, for example) where calculation
efficiency must be weighed against accuracy.

Consequently, in recent years, several studies have at-
tempted to apply the classical version of density functional
theory to model quantum particles via the PI-classical ring-
polymer mapping [3], resulting in several approximate path-
integral density functional theories (PI-DFTs). The aim of
these studies is to develop finite-temperature DFT techniques
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that, for situations where the symmetries mentioned above
allow, are significantly more efficient than the corresponding
Monte Carlo approach. They require the development of
classical density functionals for these unusual ring polymers.

For example, Broukhno er al. [4] recently developed a
PI-DFT based on what they call the “open ring approxima-
tion” (ORA), which equates any site in a ring polymer with
the middle site in the corresponding chain polymer. The
chain-polymer problem is then easily solved exactly using
the propagator approach of Woodward [5], which is also de-
scribed below. They claim that their approximation becomes
exact in the same limit that the PI technique becomes exact,
i.e., n—, and validate their method by comparison with
exact results for some simple spherically symmetric systems,
including the 3D quantum harmonic oscillator (QHO) and
the ground state of the hydrogen atom. They claim that their
excellent results validate the ORA. Their results are impres-
sive, if taken at face value, and suggest that their PI-DFT
could find wide application. However, in fact the ORA is
flawed and produces the wrong limit as n—oc. In other
words, the statistics of ring and chain polymers are not
equivalent in this limit. This result has been known for a long
time [6,7]. Their technique is described below (in its cor-
rected form) and their results for the 3D QHO are confirmed.
It is also shown how this ORA technique, and indeed any
PI-DFT technique based on classical density functionals for
ring polymers, can be extended to model adsorption in the
grand canonical ensemble. Results for the hydrogen adsorp-
tion problem demonstrate that the ORA is not generally ac-
curate.

The above PI-DFT technique is compared with one based
on the well-known semiclassical Feynman-Hibbs approxima-
tion [1]. This method quickly generates approximate interac-
tion potentials, which can then be combined with a classical
DFT to study grand canonical adsorption including the effect
of quantum dispersion. A similar approach has been used in
several [8—10] recent studies of hydrogen physisorption on
graphitic surfaces, although in each of these studies simula-
tion (either Monte Carlo or molecular dynamics) rather than
classical DFT was combined with the FH technique, and the
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actual density profiles were not derived or shown. The work
described below is the first example where the FH approxi-
mation is combined with a classical DFT for nonuniform
fluids (which is used to model “excess” interactions, i.e.,
hydrogen molecule-hydrogen molecule interactions), and it
is shown how density profiles that include dispersion can be
obtained. It is found that the FH technique performs well for
low density physisorption of molecular hydrogen on a gra-
phitic surface, although the mean-field density functional
used to model excess interactions introduces some error at
higher densities.

The work of Broukhno et al. is not the first application of
classical ring-polymer density functionals to this problem.
Gu et al. [11] also developed a density functional theory for
ring polymers, this time based on a particular version [12] of
“statistical associating fluid theory” (SAFT) that deals with
ring polymers. However, because SAFT is a perturbation
theory their ring-polymer model does not correspond to the
PI-ring-polymer mapping. Their model consists of hard-
sphere sites joined together to form a ring. Interactions be-
tween hard-sphere sites are allowed both within a single ring
polymer and between all sites on different ring polymers. In
a PI ring polymer interactions within a ring polymer should
be limited to harmonic bonds between adjacent sites, and
only sites with the same index (or label) interact with each
other on different ring polymers. These are very different
ring polymer models. No attempt is made to describe their
method or reproduce their results here, but comparison is
made between the results of the techniques examined in this
work and their published results. It is found that their work is
seriously flawed. Not only does their PI-DFT not correspond
to the PI—ring-polymer mapping, but their grand canonical
PI-MC simulation results, which they used to validate their
theory, are also found to be qualitatively incorrect.

Note that the first [13] density functional theory for non-
uniform ring polymers was based on a weighted density ap-
proximation (WDA) for bonding. In that work it was sug-
gested that this ring-polymer DFT could be adapted to model
quantum dispersion. Although this turns out to be true [14],
this approach also suffers a serious problem. The problem is
that this particular DFT for ring polymers is approximate,
and so it does not generate results that converge to a limit as
n—o. In a sense this is worse than the ORA of Broukhno et
al., which only converges to the wrong limit. By fine-tuning
n in this technique it is possible to calibrate this WDA-based
PI-DFT, but the calibration process is inconvenient and re-
sults produced by this method do not offer any significant
advantage over the Feynman-Hibbs based method for hydro-
gen physisorption on a graphitic surface at 77 K. Conse-
quently, it is not presented here.

Finally, path-integral Monte Carlo (PI-MC) simulation,
both its canonical and grand-canonical versions, is used as a
benchmark to test the density functionals for the hydrogen
adsorption problem. This PI-MC algorithm is itself validated
by comparison with exact results for the 3D-QHO system.

Two tests are employed in this work to compare the tech-
niques described above. One test is a system consisting of
single quantum particle in a 3D harmonic oscillator at finite
temperature, for which exact results are easily obtained (see
Appendix A). The second is a model of hydrogen adsorption
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in graphitic slit pores at 77 K. At this temperature the ther-
mal de Broglie wavelength of molecular hydrogen is
0.14 nm, which is more than twice the lengthscale of the
hydrogen-graphite interaction (~0.06 nm) but less than half
the average interparticle separation at the highest hydrogen
densities considered in this work (~0.34 nm). This means
that quantum effects should be significant with respect to the
hydrogen-graphite interaction but they should not be signifi-
cant with respect to hydrogen-hydrogen interactions. In other
words, molecular hydrogen at 77 K adsorbed onto graphitic
surfaces will exhibit significant quantum dispersion but not
significant quantum exchange, and so presents a suitable test
case for the DFT techniques presented here. Moreover, stud-
ies of molecular hydrogen physisorption have received a
great deal of attention, particularly over the last decade or so,
in line with research into the “hydrogen economy” and espe-
cially hydrogen storage [15]. It is known that significant
quantities of hydrogen, at either elevated pressure or reduced
temperature (or both) [16], can be stored when physisorbed
in microporous materials. But to discover an optimal adsor-
bent material together with optimal conditions of tempera-
ture and pressure is a challenge that still consumes a great
deal of effort [17].

One of the difficulties in this respect is the quantum na-
ture of hydrogen at low temperature. A range of techniques
have been used to model these quantum effects, from PI-MC
simulations [18,19] to more efficient approximate techniques
based on the Feynman-Hibbs (FH) approach combined with
Monte Carlo or molecular dynamics simulations. Stan and
Cole [20] also used the FH approach to model hydrogen
adsorption, but only considered the low density limit where
excess interactions are absent, while Kowalczyk and MacElI-
roy [21] combined the FH technique with a standard DFT
describing excess interactions but only considered the bulk
limit. Gu er al. [11] developed the first PI-DFT technique
based on classical density functionals for nonuniform fluids,
although as described earlier, their method is flawed. So the
work described below is the first serious attempt to model
the quantum dispersion of hydrogen adsorption at 77 K us-
ing only techniques based on classical density functionals.

The remainder of this paper is structured as follows. The
theory section briefly describes each of the techniques above.
The test systems are described in detail, and results for these
test systems are presented and compared for each technique.
The paper is concluded with a discussion.

II. THEORY

Path integral theory can be used to represent quantum
particles at equilibrium as unusual classical ring polymers.
The mapping is exact in the limit that n, the number of sites
on each ring polymer, tends to infinity. These ring polymers
are unusual because of their interactions; in the absence of
exchange interactions intrapolymer interactions occur only
between adjacent sites (which are labeled 1, ...,n with site 1
being adjacent to site n) and can be taken to be springlike in
form, while interpolymer interactions occur only between
sites with the same label and have 1/nth the strength of the
bare interparticle interaction, ¢. Likewise, each site interacts
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with an external field, V*', but only with 1/nth the strength
of the original potential. In the absence of exchange interac-
tions these ring-polymers particles obey classical Boltzmann
statistics, so for N identical “Boltzmannons” the partition

function is
1 i’lﬂ)\ 3Nn/2
:_<_> de]dRN
N'\

Xexp[— B(Hintra +Himer+Hext)]’ (1)

where the intrapolymer, interpolymer, and external potential
contributions to the Hamiltonian are, respectively,

N N
gintra _ E Hi“‘ra(R,-) = n)\E E V,-zj.ij+1 > (2)
i=1 =1 j=1
NN P
Hmtel’: _E 2 ¢(rik.jk), (3)
icjk=1
N 1 N n
H™ =2 H¥(R,) = ;2 > V(). “

i=1 i=1 j=1

Here, 2n\=mn/(Bh)* is the “spring constant” of the in-
tramolecular interactions, % is Planck’s constant divided by
2, B=1/kgT (where T is the temperature), m is the parti-
cle’s mass, R;={r;;,ry ...,r;,} is the set of coordinates for
the sites of the ith ring polymer, r;. jl=|r,»k—rj,| is the separa-
tion between the kth site on the ith ring polymer and the /th
site on the jth ring polymer, and r;,,;=r;; to create the rings.
Essentially, the total interparticle and external potential inter-
action energies are averaged over the path of the ring poly-
mer. This path is, for an isolated ring polymer, rather like a
random 3D walk of steps with a range of lengths consistent
with the intramolecular springlike bonds (it is not a perfectly
random path because the final site is adjacent to the first).
Note the thermal de Broglie wavelength A=\7/B\.

Following Woodward [5], the exact Helmholtz free en-
ergy for the system of PI ring polymers is expressed in terms
of the ring polymer density p(R),

F=F4 FP 4 Pt 4 F

=kgT f dR p(R){In[(/8\)**p(R)] - 1}

+ f p(R)V"™(R) + J p(R)V(R) +F,  (5)

where V"' and V! are the intramolecular and external po-
tentials for a single ring polymer [obtained by setting N=1 in
Egs. (2) and (4)]. Here, the first term is the ideal contribution
for a gas consisting of molecules which are formed from n
sites each, the second term accounts for the harmonic bonds
between adjacent sites on each ring polymer and bonds the
appropriate sites together to form a ring, the third term ac-
counts for the interaction with the external potential, while
the last “excess” term describes interactions between differ-
ent ring polymers. Although an elegant formulation, the
problem with this approach is the description of a ring poly-
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mer in terms of R, which can have very many dimensions.

An alternative representation of this system can be ob-
tained based on the interaction-site density functional for-
malism of Chandler et al. [22,23]. Here, the exact Helmholtz
free energy density functional is written in terms of the total
site density p,(r),

F=F4 ¥ 4 FP 4 F
= kBTf dr py(r){In[(7/nBN)*?p(r)] - 1}

+ 1 j py(r)V¥Y(r) + F? + F**, (6)

Once again, the first term on the right is the ideal gas con-
tribution, the next term accounts for the interaction with an
external potential, the third term accounts for bonded inter-
actions, and the last term describes all other interactions. The
advantage of this description is that, because r has far fewer
dimensions than R, techniques based on it could potentially
be as efficient as DFTs for simple fluids (which area also
described in terms of r). However, contrary to the Woodward
approach, with this interaction-site approach an exact and
compact expression is lacking for the bonding functional.
This is a serious disadvantage because for the ring-
polymer—PI mapping we prefer the ring-polymer density
functional to converge to a fixed limit, close to the exact
limit, as n— . Yet, because any bonding functional is nec-
essarily approximate with this approach, this is not guaran-
teed. So PI-DFT techniques based on this approach could
suffer serious problems, like the WDA-based method men-
tioned earlier.

A. Open ring approximation

Broukhno e al. explain that an exact solution of the ideal
(i.e., ignoring the excess functional F°*) PI ring-polymer
problem corresponding to Eq. (5) can be achieved but only at
considerable computational expense. The difficulty, com-
pared to chain polymers, arises because of the need to ensure
that the polymer forms a ring, which requires one to keep
track of where the “beginning” and “end” points of a ring
are. In the general case this presents severe computational
difficulties, although for systems with reduced symmetry,
such as fluids with spherical particles adsorbed on planar
surfaces, calculations should be much less demanding. Be-
cause of this, Broukno et al. are able to solve the exact PI
ring-polymer problem for a single particle in a 1D-QHO
quite straightforwardly.

To model PI ring polymers more generally Broukhno et
al. use the Woodward propagator approach described above
and what they call the “open ring approximation” (ORA).
The ORA equates the site density for any site in a ring poly-
mer with an odd number of sites with the site density of the
middle site in the corresponding chain polymer. Using the
ORA and Woodward’s propagator technique, the density of
this middle site is given exactly (see Appendix B and Ref.
[4]) for ideal polymers (where F**=0) by
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p(r) = expl= BV (0)/n — u Gy p (0P (D)

where the propagators, G_ll-i“(r), for freely jointed chains are
given by

GI'(r)) = f dr,G " (ry)exp[— BV(ry)/n]

Xexp(— nﬂkr%z), j>0,

Go'(r) =1. (8)

Here, w is the Lagrange multiplier that achieves the correct
total number of middle-sites (which becomes the configura-
tional contribution to the chemical potential in the grand ca-
nonical ensemble). Note that in their work [4] Broukhno et
al. use the index “n/2” in Eq. (7) and consider polymers with
an even number of sites, instead of the index “(n—1)/2” and
polymers with an odd number of sites. It follows that the
external potential in their work is too large by a factor of
(1+n~"). This will reduce the rate of convergence as 1n—
in their work, and explains why large values of n are needed
in their work even for high temperatures. For nonideal ring
polymers (where the excess functional F**# 0), the external
potential V*(r) in Egs. (7) and (8) is replaced by V*!(r)
+ 8F*/ 8p(r), where p(r)= p?id(r). This excess functional is
defined later.

However, contrary to their claims, the ORA does not be-
come exact in the limit n—oo. It is well known that the
statistics of fully flexible noninteracting ring and chain poly-
mers are very different [6,7], and in the n—oo limit the
squared radius of gyration for a ring polymer is half that of a
chain polymer. Because the density profile of the middle site
in a chain polymer is influenced by the distribution of the
other sites in the same polymer, this implies that it cannot be
equivalent to the density profile of a site in a ring polymer.
One can also compare the total intrapolymer site-site pair
correlation function for the middle site in a chain polymer
and any site in the corresponding ring polymer in the n
— oo limit for a bulk situation. Figure 1 clearly shows that
these polymers are quite different (see Appendix B for a
derivation of the equations depicted in Fig. 1). This figure
compares these functions for n=1001, which is sufficiently
large that no visible difference is observed on the scale of
this plot when n is increased further. The ring polymer is
much more compact than the chain polymer. This means that
we should expect the chain polymer to underpredict the true
density profile of a quantum system in the grand canonical
ensemble because it will tend to generate too much smooth-
ing due to dispersion. The effect for a canonical ensemble
system will be more subtle because the total number of par-
ticles is fixed. However, we still should expect it to produce
a smoother, more dispersed, density profile.

So in general we should not expect the ORA to be accu-
rate. Yet in their work, Broukhno et al. showed that it was
extremely accurate for some particular spherically symmetric
external potentials, namely the 3D-QHO and for the electron
density surrounding some atomic nuclei. They claim that this
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FIG. 1. Comparison of the normalized total site-site intramo-
lecular correlation function for fully flexible noninteracting chain
(dashed line) and ring polymers (full line) in the limit n— . For
the chain polymer this function is evaluated with respect to the
middle site of a polymer with an odd number of sites, while for the
ring polymer this function is identical for each site. The reduced
radius r*:rv“%.

level of accuracy should also be seen more generally. One of
the aims of this present work is to show that this is not the
case.

B. Feynman-Hibbs technique

In this approach a quantum particle is approximated by a
three-dimensional Gaussian wave packet which is used to
calculate effective interactions between the quantum particle
and other particles. It is a well-known technique that is de-
scribed in detail elsewhere [1,24,25]. The effective potential
is

Vilff(rl) =(2mAg?) 2 J dr,Vl(r,)exp(— r%Z/ZAqZ), 9)

where Ag?=ph%/12m=kyT/24\, rj=|r;-r,|, Ve is the
“bare” classical potential, and the mass m is the reduced
mass of the quantum particle and the object it is interacting
with. Although it is straightforward to evaluate this integral
precisely numerically, for some of the divergent potentials
used in this work it should approximated by performing a
Taylor series expansion of the interaction potential V' about
r,. For the effective interaction between two spherical quan-
tum particles the result to second order in the series expan-
sion is

ﬁZ
#1r) = (1) + (—Zm)v2¢<r)
_ ﬁﬁ2)<a2¢<r) 2 a¢<r>)
_¢(r)+<12m or? +r ar )’ (10)

where r is their separation and m is the mass of one particle.
For the effective interaction between a quantum particle and
an immobile spherically symmetric external potential the
corresponding result is
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ff _ Xt ﬂhz) 2y ext
Veu(r) = V¥(r) + (24 V-verr)
2 Xt Xt
V) 4 (,Bﬁ ><§2W2(r) L2V (r)>.
24 or roor

(11)

For the effective interaction between a quantum particle and
an immobile planar surface the result is

B_ﬁz ) PVH(z)

24m) 92 (12)

Ven(@) = V'(2) + (
where z is the distance normal to the surface. These effective
interaction potentials can be combined with DFT for classi-
cal fluids to arrive at an Euler-Lagrange equation for the
density profile of the effective classical particles,

. OF%*
p(r)) = EXP[— B(Viffl(rl) R m)] . (13)

where w is the Lagrange multiplier (or configurational
chemical potential for the grand canonical ensemble) and F*
is an excess Helmholtz free-energy density functional for a
system described in terms of effective interactions, ¢°'.
These interactions and the corresponding F** are described in
the next section. To obtain the actual density profile includ-
ing the effect of quantum dispersion the effective density
profile must be convoluted with the 3D wavepacket once
more. So we have

p(r) = 27Ag*)" %/zfdrzpeff(rz)exp(— r%2/2Aq2).

(14)
This technique is denoted FH-DFT.

C. Excess functional

Each of the techniques described above requires a pre-
scription for the excess functional. In this work an excess
functional is only needed for the hydrogen physisorption
problem since the 3D QHO test only involves a single par-
ticle. If our system comprises only ring polymers represent-
ing hydrogen molecules, and if we label the sites on each
ring polymer 1...n and consider the system to consist of a
mixture of sites, i.e., if we adopt the interaction-site model of
Chandler et al. [22,23] (6), then the excess functional for a
grand canonical ensemble can be written using the well-
known density functional relation [26]

= kBTE da(a— 1) f dr, fdr2pi(rl)pj(r2)

ij=1
Xcijex(rl’r27pa) (15)
where cU ex(rl ,I5,p,) is the “excess” pair-direct correlation

function acting between sites i and j for the system with
density p,=ap(r) and p,(r) is the density of sites labeled
i. This excess function is simply the total site-site pair-
direct correlation function less the contribution due to the
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bonding functional c( Lx(rl,rz) c (rl ,Ty)— C; b(rl ,T),
where c (rl,rz)— ,852Fb/ 5p,(l‘1)5pj(l‘2) Because of the
symmetry of the ring and because each site is identical (ex-
cept for its label), Eq. (15) can be written

1
Fex=kBTf da(a- 1)fdrlfdrzp(rl)p(rz)cf)(rl,rz,pa),
0

(16)
where c<2 =nX_y ,C (1 ox- Because there are no site labels in
Eq. ( 16) it has the same form as a density functional theory
for a simple classical system interacting via an effective ring-
polymer—ring-polymer interaction that generates the pair-
direct correlation function cflz). The Feynman-Hibbs tech-
nique prescribes an approximation for this effective
interaction via Eq. (10). But in general we are free to choose
the effective interaction so that it generates these pair corre-
lations accurately. Density functionals able to model these
effective interactions are discussed below. As mentioned ear-
lier in the context of the ORA technique, the external poten-
tial, V**(r), in Egs. (7) and (8) should be replaced with
VeXi(r) + SF°*/ 8p(r), where F* is given by Eq. (16). We de-
note this technique ORA-DFT. But note that the derivation of
F* here is quite general, and not limited to the ORA-based
method.

In this work molecular hydrogen is modeled as a single
quantum particle and the distinction between ortho- and
parahydrogen is not made. This model is thought to be suf-
ficient at the temperatures considered in this work. So, for
both the FH-DFT and ORA-DFT techniques we must define
an excess functional corresponding to a model of effective
H,-H, interactions. In this work all such effective interac-
tions are described by Lennard-Jones (LJ) interactions and
hence standard excess functionals that describe LJ fluids are
used. Although the FH technique actually prescribes a
slightly different effective interaction, this effective FH in-
teraction is accurately modelled by a LJ interaction (see the
Results section). So a standard approximate DFT expression
for LJ fluids is used

Pp0) = F5Tpte))+ 5 [ i, [ deaptepten
(17)

where F3' is the original fundamental measure hard-sphere
functional of Rosenfeld [27] and of Kierlik and Rosinberg
[28,29], and ¢, is the attractive contribution to LJ interac-
tion. The hard-sphere diameter d is set equal to the LJ length
parameter ¢°f, while ¢, is determined according to the pre-
scription of Weeks, Chandler, and Andersen (WCA) [30] ap-
plied to a cut-and-shifted LJ potential

—(r), r=2"g",
¢att(r)= ¢Ll(r)_¢LJ(rc)a 21/60’6ff< r= Tes (18)
0, r>r.,

where ¢y is the Lennard-Jones model
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bui(r) = 472 = x7), (19)

x=r/0c"", and r, is the cutoff radius (equal to 1.5 nm in this
work). These functionals are well known and described else-
where in detail [26]. Application to slit pores is straightfor-
ward [31,32]. Although other potentials thought to be more
accurate have been used to model molecular hydrogen in
other work they are not used here for several reasons. First,
the focus of this work is not actually the precise prediction of
hydrogen adsorption, but instead the comparison of several
techniques capable of modelling hydrogen adsorption effi-
ciently. On this basis alone there is no need to use models
that might offer slightly greater accuracy than the LJ model,
which is adequate for the purpose of this work. Secondly, it
is likely that the approximation (17), which could be applied
straightforwardly to other potentials if required to do so, gen-
erates greater error than choosing the LJ potential over other
possibly more accurate potentials. In any case, we will see
below that the LJ potential and Eq. (17) is able to accurately
reproduce a bulk isotherm of hydrogen at 77 K.

As mentioned above, this excess density functional pre-
scription for LJ fluids is known [33,34] to be only reasonably
accurate for modelling adsorbed fluids, even if the model
parameters are chosen to accurately reproduce bulk data.
Much greater accuracy can often be achieved [33,34] with
more sophisticated (and somewhat more demanding) density
functionals for LJ fluids.

Both the FH-DFT and ORA-DFT techniques are solved
by Picard iteration. The excess density functional is given in
each case by Eq. (17), but the effective Lennard-Jones pa-
rameters that enter this functional are different in the FH-
DFT and ORA-DFT approaches and determined later.

D. PI-MC simulations

The techniques described above based on classical density
functionals are compared to results generated by PI-MC. Ca-
nonical ensemble PI-MC simulation is used for the 3D-QHO
test, while the grand canonical PI-MC technique (PI-GCMC)
used in this work to model hydrogen adsorption is similar to
that introduced by Wang and Johnson [35]. The only signifi-
cant difference with their work is that a hybrid MD technique
is not used to perform a displacement move. Instead, a more
straightforward Monte Carlo scheme is used. In this scheme
a trial displacement consists of moving a single ring-polymer
as follows. Each site on the ring-polymer is moved by the
same amount dr (chosen randomly with uniform probability
from within a sphere of radius dry), and then each site is also
moved an additional dr; (chosen randomly with uniform
probability within a sphere with radius dr;), where dr; is
different for each site i. dr; <dry, must be quite small to
ensure a reasonable probability of acceptance (generally
about 50%). For each simulation 5.12 million trial moves are
attempted, half of which are attempted displacement moves
(the other half are trial insertions and deletions), with an
additional 0.5 million attempts to allow equilibration. 100
noninteracting “gas-phase” PI ring polymers are simulated
simultaneously to provide a pool of random configurations
that can be used to generate trial insertions. This PI-GCMC
technique is compared with exact results for the 3D QHO to
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determine the largest value of n for which it is ergodic for the
kinds of systems studied here. Results are presented later.

E. Test systems

The 3D QHO system is studied to confirm the results of
Broukhno et al. for the ORA and to validate the PI-GCMC
algorithm used here. A 3D harmonic oscillator is defined by
the potential

1
VeX(y) = EKrZ, (20)

where K is the spring constant. We consider a single quan-
tum particle system at fixed temperature, i.e., a canonical
ensemble. The exact solution for energy levels and density
profiles of the 3D QHO is given in Appendix A. From this
solution we see that only two independent parameters are
needed to define a 3D QHO: An inverse length

y=\ \J'E/h (21)

and the dimensionless parameter

ANK/m

; (22)

which is related to the probability that the system is in its
ground state, p(0)=[2e~9? sinh(5/2)]°. So, by working with
a reduced length, r*=rv, we have to consider only one pa-
rameter, 0. Because of the spherical symmetry of this poten-
tial numerical solutions are most conveniently found using
fast Fourier transforms [31].

The main part of this paper studies hydrogen physisorp-
tion at low temperature. For this problem the bare, or high
temperature, hydrogen molecule—hydrogen molecule interac-
tion (i.e., not the effective hydrogen molecule-hydrogen
molecule interaction) is set equal to that used in other work
[11]. That is, a molecular hydrogen site is modeled as a
Lennard-Jones particle with energy and length parameters
equal to ex/kp=36.7 and ox=0.296 nm, respectively. As
usual, a slit-pore is defined as two parallel ideal walls sepa-
rated by a distance H

V() = Vi) + V(H = 2). 23

where the hydrogen molecule—graphitic wall interaction is
provided by the Steele potential [31]

2( o\ (0‘ )4 o ]
G S 9} (9 o Yy
VS(Z)—ZWPsAoffS‘Yf{5< z ) 2/ 3A(0.61A+2)°
(24)

and the Lorentz-Berthelot mixing rules are used to define
Cross parameters

N
oy =0+ 02, &= \Neye,. (25)

Surface parameters appropriate for modeling graphite are
[31] e/ky=28.0K, 04=0.34nm, p,=114 nm=>, and A
=0.335 nm.
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III. RESULTS
A. 3D-QHO

Let us consider the Feynman-Hibbs technique applied to
the 3D-QHO first. Application of Egs. (9)—(20) gives the
well-known [24] result

” K
Ve (r) = VeX(r) + %qu. (26)

Essentially, the entire potential is shifted by a constant
amount. The same result is obtained using the second order
version (11). In this system, for which the number of par-
ticles is fixed at one, this shift of the potential will have no
effect on the density profile of the effective classical par-
ticles; it will be exactly the same as the classical result. The
effect of quantum dispersion on the density profile is in-
cluded through Eq. (14), giving the result

BK77 32 ~ 2
P(’”)=<? e BRI, (27)

where 7=(KAg*>+1)~'. Likewise, the average energy is in-
creased above the classical energy by 3KAg?/2. These re-
sults are displayed in Figs. 2(a) and 2(b) (density profiles)
and Table I (energies), where they are compared with exact
results (A4), and results from the ORA. The ORA results of
Broukhno et al. for this system are reproduced, albeit much
more efficiently than in their work, due to the use of the
correct ORA expression (7).

Figure 2(a) compares results for the density profile when
=8 [corresponding to p(0)=0.999], where r* is described
above and p*=p/ 7’ is the reduced particle density with re-
spect to this reduced length scale. The main plot shows that
the ORA performs exceptionally well in this case. Using the
ORA, results for n~81 and above cannot be distinguished
from exact results on the scale of this plot. The FH result
significantly “oversmooths” the density profile, which is ex-
pected because the Gaussian wave packet employed is fixed
in this approximation and cannot adjust to the presence of
the external potential.

Figure 2(b) is similar to Fig. 2(a) except that the tempera-
ture is higher [8=1, corresponding to p(0)=0.253]. Similar
comments apply, except now the FH result is much more
accurate at this higher temperature. Because the correct ORA
expression (7) is used in this work it generates satisfactory
results even for n=11, which is several orders of magnitude
smaller than typical values in Ref. [4].

Table I displays the energy for each result shown in Figs.
2(a) and 2(b). For each approximate calculation the total en-
ergy is determined from the average potential energy via the
virial theorem [36], which in this particular case is

2 ) = <‘9f > 28)

Here, E;,. is the kinetic energy and the angle brackets de-
note an ensemble average. For the classical and FH ap-
proaches E;,=3kzT/2, and hence the total energy is easily
calculated. For the ORA approach the right-hand term in Eq.
(28) is simply twice the average potential energy. So the total
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0.01

0.001

2.5 3.0

FIG. 2. (a) Density profiles for the 3D QHO with §=8. The
circles are exact quantum results, while the solid line is the exact
classical result. The dot-dash and dottted lines are results from the
ORA (with n=81) and the FH methods, respectively. The reduced
length and density are r* and p*, respectively. The reduced density
is shown on a logarithmic scale. (b) As for (a) except that =1, for
the ORA result n=11, and reduced density is shown on a linear
scale.

energy is just twice the average potential energy, which is
easily calculated from the density profile. The total energy
for the exact result is given in Appendix A. Note that if the
energy for each technique had been calculated from the re-
sulting approximate wave function and the Schrédinger
equation then each result in Table I would be greater than 1,
since 1 indicates the ground state. But this is clearly incorrect
for a classical system; hence the use of the virial theorem in

TABLE I. The total energy of the 3D-QHO predicted by several
methods, expressed relative to the ground-state energy, where & is
given by Eq. (22).

) Exact ORA FH Classical
8 1.0007 0.9995 0.9167 0.25
1 2.164 2.162 2.083 2.0
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0.05
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0.0

FIG. 3. PI-GCMC results using the algorithm described in the
text for the 3D-QHO with 6=3 using a range of values of n: n=8
(solid triangles with dashed line), n=12 (open circles), n=16 (open
squares), n=20 (open diamonds), n=24 (open triangles), and n
=28 (solid circles with dashed line). The dashed line is the classical
result while the solid line is the exact quantum result. The reduced
length and density are r* and p*, respectively. Statistical errors are
usually smaller than symbols sizes, except for a few points close to
the origin.

this work and in Ref. [4] which is appropriate for techniques
based on ring-polymer models.

Finally, the PI-GCMC algorithm is tested to determine the
range of n over which it is ergodic for 6=3. This value of &
is chosen because it produces a similar degree of quantum
dispersion to the hydrogen adsorption problem at 77 K, and
so is a suitable validation test of the PI-GCMC algorithm
used here. The grand-canonical technique is tested using
noninteracting quantum particles. An arbitrary chemical po-
tential is chosen, and the final density is scaled to achieve an
average of 1 particle in the 3D-QHO.

Figure 3 shows PI-MC results for several values of n, and
compares them against exact classical and quantum results.
By inspection, we see that n= 12 is sufficient for this system,
but the technique starts to become nonergodic for n>24.

B. Hydrogen physisorption in graphitic pores

Each of the above techniques are compared for a model of
hydrogen adsorption in graphitic pores at 77 K, which
roughly corresponds to the lower bound of interest in hydro-
gen physisorption studies. Pores of 0.7 nm and 2 nm in
width are considered because they represent quite different
situations. When H=0.7 nm only a single layer of hydrogen
is adsorbed, while for H=2.0 nm we have a layer of hydro-
gen on each wall with much more dilute gas filling the re-
mainder of the pore.

The first task is to determine the lowest value of n that is
sufficient in the PI-GCMC simulations to obtain accurate
results. A demanding scenario here is the 0.7 nm pore at the
highest activity &é=pexp(Bu*). Figure 4 displays PI-GCMC
results for several values of n at 77 K and £=1.0 in this pore.
We see that increasing n beyond 8 has little impact relative to
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FIG. 4. PI-GCMC results for hydrogen adsorption in a 0.7 nm
graphitic slit pore at 77 K and ¢=1.0 using a range of values of n:
n=4 (open circles), n=8 (open diamonds), and n=12 (open tri-
angles). Lines are a guide to the eye and statistical errors are
smaller than symbols sizes. Only a left-hand portion of the pore is
shown; z is the distance from the left-hand pore wall.

the statistical error in the results. So for all other PI-MC
simulations at 77 K n is set to 12, which by comparison with
the 6=3 3D-QHO results in Fig. 3 is thought to be well
within the ergodic regime. Wang and Johnson [18] find that
n=15 is sufficient in their work at 77 K.

The effective FH potential calculated from Eq. (11) is
shown in Fig. 5. For convenience a LJ potential is used in
place of the effective FH potential. Figure 5 also shows this
effective FH LJ potential which is determined by finding the
closest fit to the second moment of the Mayer function [37]
(which ensures close agreement in the second virial coeffi-
cient). So, the effective LJ parameters used for the FH tech-
nique are 0'=0.3076 nm and £°'/k;=31.62 K at 77 K.

|
04 - '\
\
|
0.2 - |
|
S |
= 00 ‘\
he |
|
0.2 1 1
|
i
0.4 \
\ 7
0.2 0.3 0.4 0.5 0.6 0.7

7 (nm)

FIG. 5. Molecular hydrogen—molecular hydrogen interactions
used in this study. The full line is the Feynman-Hibbs interaction
resulting from operating on the site-site potential (dashed-dot line)
via Eq. (10). The dotted line is the best Lennard-Jones interaction
that fits this FH interaction with respect to the second virial
coefficient.
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FIG. 6. Bulk isotherms for models of molecular hydrogen at
77 K. The solid circles are classical GCMC results using the bare
hydrogen molecule-hydrogen molecule potential and the solid line
corresponds to the best fit to them using the DFT (17) with param-
eters in Table II. The open circles are PI-GCMC results, and the
dotted line corresponds to the best fit to them using the ORA-DFT
with parameters in Table II. The open triangles are GCMC results
using the FH-LJ potential shown in Fig. 5, and the dashed-dotted
line corresponds to the best fit to them using the FH-DFT with
parameters in Table II.

Next, the effective L] parameters for the FH-DFT and
ORA-DFT techniques are determined. For the ORA-DFT
technique the effective LJ parameters are optimized to repro-
duce bulk hydrogen isotherms generated by PI-MC simula-
tions. Here, the aim is to produce the smallest root-mean-
square deviation between the bulk isotherm generated by
simulation and the bulk isotherm generated by the bulk limit
of the DFT. This idea is similar to that used by Kowalczyk
and MacElroy [21] in their application to bulk thermody-
namics of hydrogen. The best fit DFT parameters to the PI-
GCMC results are found to be ¢ =0.2903 nm and &°/kp
=28.10 K, while the best fit DFT parameters to GCMC
simulations of the LJ potential which is fitted to the FH
potential in Figure 5 are 0°7=0.2908 nm and &°/kg
=29.60 K. To compare with classical results the same LJ
parameter fitting process is used, where this time the best fit
is found to classical GCMC simulations results. This gives
0°=0.281 nm and &'/ kz=34.30 K. Each bulk isotherm is
shown in Fig. 6. All these effective interaction parameters
are summarized in Table II. The effective FH external poten-
tial corresponding to the interaction of hydrogen with a pore
wall is obtained by combining Egs. (23) and (24) with Eq.
(12).

One advantage of generating effective hydrogen model
parameters via this calibration method is that an effective LJ
model for hydrogen can be found that compensates, to a
degree, for the inaccuracy of the excess functional (17). Al-
though it could be argued that this method is computationally
demanding, because GCMC or PI-GCMC simulations are
used to generate the reference bulk isotherms, this would not
be the case when using experimental data rather than simu-
lation data as a reference, which would normally be the case.

PHYSICAL REVIEW E 77, 026712 (2008)

TABLE II. Effective Lennard-Jones parameters used in this
study. The FH-LJ parameters are found by fitting a Lennard-Jones
potential to the true FH potential obtained via Eq. (10). The other
parameters are obtained by fitting a bulk isotherm generated by the
respective DFT to a bulk isotherm generated by MC simulation
(PI-GCMC for the ORA-DFT method).

) FH-L]  FH-DFT  ORA-DFT DFT
o (nm) 0.3076 0.2908 0.2903 0.2810
&/ kg (K) 31.62 28.60 28.10 34.30

Note that the resulting effective hydrogen—hydrogen LJ in-
teraction parameters are quite similar for the FH-DFT and
ORA-DFT techniques, and ¢° is slightly larger than for the
corresponding classical parameters, as expected. However,
these results are very different to the effective LJ parameters
obtained by Kowalczyk and MacElroy [21] for hydrogen at
77 K. They find o to be much smaller (0.240 nm or
0.207 nm depending on the pressure range) than the corre-
sponding parameter of the bare hydrogen interaction
(0.296 nm), which is unexpected and suggests that there
might be an error in their calculations.

Now that all model parameters have been calibrated we
can begin to compare the performance of each technique.
First, the 77 K isotherms for the ORA-DFT and FH-DFT
techniques are compared with simulation results for the
2.0 nm pore in Fig. 7(a). Note that the FH-DFT density pro-
file is obtained from Eq. (14). Also shown in Fig. 7(a) are the
corresponding classical results. Results are presented in
terms of the average pore density

1 H
Pov=7 fo dz p(2) (29)

as a function of the bulk density. Figure 6 can be used to
convert bulk density to the activity & We see that the classi-
cal simulation and DFT results agree well at low bulk den-
sity, which is to be expected because at low density the ex-
cess functional, which is known to not be very accurate,
plays an insignificant role. As the bulk density increases the
excess functional becomes more significant and so the agree-
ment deteriorates, even though the Lennard-Jones parameters
input to this classical DFT have been calibrated to reproduce
the bulk MC simulation isotherm. “Switching on” quantum
fluctuations generates the PI-GCMC simulation, ORA-DFT
and FH-DFT results. We see good agreement at low bulk
density between the PI-GCMC and FH-DFT results, but the
FH-DFT results deteriorate at higher bulk densities. Note
that the FH-DFT isotherm, relative to the PI-GCMC iso-
therm, exhibits similar behaviour to the classical DFT iso-
therm, relative to the GCMC results, as bulk density in-
creases. This indicates that it is the excess functional, both in
the classical DFT and FH-DFT cases, that is generating this
error. Conversely, the ORA-DFT result is relatively poor at
low bulk density, where the excess functional is insignificant.
This happens because the ORA generates too much smooth-
ing of the density profile. However, at higher bulk densities
agreement between PI-GCMC and the ORA-DFT improves.

026712-9



M. B. SWEATMAN

20 4

0.10 1
0.08
~ 0.06
'
g
< 0.04 A
0.02
0.00
140 1
120
100
~
< 80 A &
’ 4
g 7
=
g 1
<~ 60 ;
40 i
20 A
-
0 : : ; ;
0.3 0.4 0.5 0.6 0.7
z (nm)

FIG. 7. (a) Average pore density isotherms for hydrogen at 77 K
in a 2.0 nm graphitic pore predicted by each technique: Classical
GCMC (solid circles), PI-.GCMC (open circles), classical DFT
(solid line), FH-DFT (dotted line), and ORA-DFT (dot-dashed line).
Statistical errors are smaller than symbol sizes. The activity § is on
a logarithmic scale. (b) Density profiles for hydrogen at &
=0.0001 nm~3 and 77 K in a 2.0 nm graphitic slit pore predicted by
each technique: Classical GCMC (solid circles), PI-GCMC (open
circles), classical DFT (solid line), FH-DFT (dotted line), and
ORA-DFT (dot-dashed line). For clarity, only a portion of the den-
sity profile is shown 0.25 nm<z<0.5 nm. (c) As for (b) except ¢
=1.0 nm~3 and only the portion 0.25 nm<z<<0.75 nm is shown.

This is because of a fortuitous cancellation of errors; the
simple DFT used here cancels some of the error inherent in
the ORA.

Figures 7(b) and 7(c) provide more insight into this be-
haviour. Figure 7(b) shows a portion of the density profiles
corresponding to £€=0.0001 nm™~3, while Fig. 7(c) shows the
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density profiles corresponding to é=1.0 nm™>. The effect of
including quantum fluctuations is clear; the height of the
peak signifying the first adsorbed layer is significantly re-
duced, to nearly half its classical value. At é=0.0001 nm™
we see excellent agreement between classical MC simulation
and DFT, which must agree perfectly in the low density
limit. We also see rather good agreement between the PI-
GCMC and FH-DFT results. In contrast, the ORA-DFT den-
sity profile is quite poor due to excessive smoothing. How-
ever, até=1.0 both the FH-DFT and ORA-DFT results are in
reasonable agreement with PI-GCMC results. This change in
the accuracy of each method is a reflection of the accuracy of
the DFT used for F**.

Similar behavior is observed for the 0.7 nm pore. Figure
8(a) shows the corresponding average pore density isotherm,
while Figs. 8(b) and 8(c) display portions of the density pro-
files corresponding to £=0.000 001 and £=1.0. Note that for
both the 2.0 nm and 0.7 nm pores the average pore density is
reduced relative to the classical result by over 20% at mod-
erate densities, while the peak height in the density profile is
reduced by about 40% for the 2.0 nm pore.

If we compare results of Gu ef al. published in Ref. [11]
with those here we see that both the PI-DFT and PI-GCMC
results in Ref. [11] are qualitatively incorrect for low bulk
densities. In particular, in Figs. 2a, 3a, and 4a in Ref. [11] we
see the effect of including quantum dispersion at 100 and
70 K, relative to the classical result, is very significant. The
density peak corresponding to the first adsorbed layer ap-
pears to be dramatically reduced, although admittedly the
entire classical profile is not reproduced in these figures. This
behaviour is qualitatively different to that observed here
where the effect of quantum dispersion is much more modest
at 77 K. Although these results in Ref. [11] correspond to
cylindrical pores, which model carbon nanotubes, and bulk
densities in the range 3 to 5 nm™, these cylindrical pores are
sufficiently wide that qualitative comparison with the 2.0 nm
slit pore results at €=1.0 here [Fig. 7(c)] is valid. Although
we can expect the PI-DFT results in Ref. [11] to be poor
(because of the SAFT-base ring-polymer model used), this
does not explain why their PI-GCMC results agree with
them.

IV. DISCUSSION

The aim of this work is to survey techniques based on
classical density functionals able to model hydrogen phys-
isorption at low temperature. Only methods able to treat
quantum dispersion have been considered. In particular, tech-
niques based on the ORA and FH approximations are com-
pared at 77 K. To allow consideration of isotherms a density
functional treatment of excess (hydrogen molecule-hydrogen
molecule) interactions is developed for both techniques. We
find that the FH technique is inherently more accurate than
the ORA technique for this problem at low densities. This
indicates that the fixed Gaussian wave packet representation
of the quantum dispersion of molecular hydrogen at 77 K is
accurate for adsorption in graphitic pores. However, the
ORA technique is able to cancel some of the error inherent in
the excess density functional at moderate and higher densi-
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FIG. 8. (a) As for Fig. 7(a) except that the pore is 0.7 nm wide.
(b) As for Fig. 7(b) except that the pore is 0.7 nm wide, &
=0.000 001 nm~> and only the portion 0.25 nm<z<0.35 nm is
shown.(c) As for Fig. 8(b) except £&=1.0 nm™.

ties. This conclusion does not appear to depend on the slit
pore width. So, the ORA-DFT technique is preferred overall
unless more accurate density functionals are used to treat
excess interactions. Existing density functionals [33,34] for
Lennard-Jones fluids could be used in this context, but it is
not yet clear whether they remain accurate in the narrowest
pores. Unfortunately, the ORA-DFT technique is somewhat
less efficient than the FH-DFT technique because of the ad-
ditional numerical demand required to integrate the propaga-
tors, and this additional overhead increases linearly with n.
Roughly, if the numerical effort required for the FH-DFT
technique is proportional to 6+2r./d, then the effort required
for the ORA-DFT technique is 6+2r./d+(n—1)/2, if each
propagator integration is carried out on a mesh with the same

PHYSICAL REVIEW E 77, 026712 (2008)

number of points as (but a finer resolution than) the hard-
sphere fundamental measure functional integrations. At
much higher temperatures the ORA-DFT technique should
become almost as efficient as the FH-DFT technique because
it converges for smaller values of n at higher temperatures.

Each of these techniques could be applied to model hy-
drogen adsorption in real materials such as active carbons
and carbon nanotubes, which are often [31,32] modeled in
terms of slit or cylindrical pores. Because of the efficiency of
each DFT technique, for which solutions are generally ob-
tained in a matter of seconds on a desktop PC in this appli-
cation to slit pores, they would be particularly suited to op-
timization studies of adsorption materials. In this case, the
Lennard-Jones parameters could be calibrated by comparison
with experimental data for bulk and adsorbed hydrogen
rather than by comparison with PI-GCMC simulations. Note
that the corresponding PI-MC simulations required tens of
minutes to several hours, depending on the value of n, to
obtain a satisfactory level of statistical error, which supports
the view expressed in the introduction that DFT techniques
can find useful applications.

It is interesting to try and understand why the ORA is
remarkably accurate for the 3D-QHO problem as well as
other central potentials. The problem with the ORA is that
the statistics of a chain polymer are not the same as those of
the corresponding ring polymer. This is because the end sites
(with labels 1 and n) are not harmonically bonded as they are
in a ring polymer. However, note that for a bulk fluid this
final bond has no effect on the bulk density corresponding to
a given chemical potential. Moreover, for problems involv-
ing attractive central potentials, like the 3D-QHO here and
the hydrogen atom problem in Ref. [4], the average site
1-site n separation will reduce relative to its bulk value be-
cause of the constraining effect of the external potential. In-
deed, this average separation will reduce as the confining
external potential becomes stronger, so long as it is a central
potential. Essentially, a confining central potential will, on
average, “squeeze” these end sites together. This effect will
not occur for other kinds of external potential. So, for attrac-
tive central potentials we can expect the statistics of chain
polymers to converge to those of the corresponding ring
polymers as the external potential becomes stronger. By in-
terpolation then, because the ORA provides accurate density
profiles for a uniform potential and for strongly attractive
central potentials, we might also expect it to be accurate for
any attractive central potential. For general potentials this is
not the case; the ORA generates too much smoothing. More-
over, when the number of quantum particles is fixed, as with
the application to the 3D-QHO and other central potential
problems in Ref. [4], the Lagrange multiplier is chosen to
ensure this constraint is satisfied. Essentially, the density pro-
file is rescaled to satisfy this condition. This compensates to
some degree for any inaccuracy in the ORA. This rescaling
is not performed in grand canonical applications such as the
hydrogen adsorption problem here, and so for this problem
the error inherent in the ORA is more obvious.

Regarding other PI-DFT techniques based on classical
density functionals, the method of Gu et al. [11] is shown to
be qualitatively incorrect, while the weighted density ap-
proximation for bonding [13] can be extended to PI ring
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polymers but requires calibration in advance, which is incon-
venient.

Note that because quantum exchange is significant for
electrons in atoms, molecules and solids the methods pre-
sented here cannot be applied immediately to model these
particles. The most important missing ingredient is the ex-
change contribution to F* for electrons, i.e., the exchange
functional. In principle, the same exchange-correlation func-
tionals used with other electronic structure density functional
techniques could be applied to the ORA-DFT method pre-
sented here. However, because of the limitations of the ORA
we should only expect accurate results for central potential
problems, e.g., the electronic structure of atoms and ions.

APPENDIX A: EXACT 3D QHO SOLUTIONS

For a single particle, exact solutions for the particle den-
sity are obtained by summing over the appropriately Boltz-
mann weighted distribution of quantum state densities. The
3D QHO can be treated as three independent orthogonal lin-
ear harmonic oscillators, so the particle density is

23 4, @0 Wexpl- Bho(n, +0.5)]

p(r) = 02

1 < .
<5 > 4, ()4, ()expl- Bliwln, +0.5)]
n‘.=0 y

1 < .
<5 2 U ()4 (Dexpl- Bhw(n, +0.5)],
n=0 <

(A1)

where the partition function, Q, of a linear harmonic oscilla-
tor is

s}

0=, exp[- Bho(n+0.5)]=[2 sinh(Bhw/2)]",

n=0
(A2)

1//,,X(x) is the wave function corresponding to energy level n,
for a 1D QHO corresponding to the x component, and w
=\K/m.

Because the 3D QHO is spherically symmetric we expect
the particle density to be conveniently expressed as p(r),
which is equivalent to

o)== 3 1, ()0 (Wexpl— Bhon, +0.5)]

Q n,=0

- .
X3 > U, (0] (0)exp[- Bho(n, +0.5)]
ny=() - y

1 < .
X3 > 1, (0)¢ (0)expl- Bho(n, +0.5)].
nz=0 <

(A3)
The wave functions of the 1D QHO are
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lr/fn(-xJ) = Can(’)’X)eXP[— (’}’X)Z/Z]CXP(— iEnt/h), (A4)
where the energy corresponding to each wave function is

E,=ho(n+0.5). (AS)

In Eq. (A4) i=\-1, y=\mw/t, C,=\y/7*2"n!, and a re-
currence relation is used for the Hermite polynomials:

Hl =2a'x,

H,.i(ax) = 2axH,(ax) - 2nH,_(ax). (A6)

Note that although the particle density (i,(x) w:(x)) corre-
sponding to individual linear harmonic oscillator states is not
spherically symmetric, once the Boltzmann sum over states
is performed the particle density is spherically symmetric, as
required.

APPENDIX B: STATISTICAL MECHANICS
OF PI RING POLYMERS

This appendix deals with the statistical mechanics of non-
interacting PI ring-polymers in the canonical ensemble. We
need only consider a single ring polymer. From Eq. (1) the
partition function of one PI ring polymer is

I’Z,B)\ 3n/2 .
Qﬁ(?) f dR exp{— BLH™"(R) + H**(R)]}.

(B1)

From this we obtain the density profile of the entire ring
polymer

3n/2
p(R)=<5(R'—R)>=i(—"’37‘) /de'
(@) T

1
Xexp{— BLH™“(R") + H*(R")[}6(R' - R)

= Q- 'exp{- BIH™"*(R) + H*"(R)]}, (B2)

where Q. is the configurational part of the partition function
Q,. This proves that Eq. (5) is the correct expression for the
canonical Helmholtz free energy functional because the
minimum of Eq. (5) with respect to p(R) gives Eq. (B2)
when multiplied by exp(Bu), where w is a suitable Lagrange
multiplier.

From Eq. (B1) we can also find the density profile of
site i
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1 n,B)\ 3n/2 - )
pi(r) =(&r; - 1)) = a<7> f dR exp{- BLH""“(R) + H*'(R)]}&(r; - 1), (B3)

where R=(ry,...,r,), which can be written

2 2
pi(r) = Qe PV f dr;_ e PV T g=AnNe - iy f dr;_ e PV PN J dr e PV =By,

% f dr,, e PV i) g=BNr = ri f A, e BV D BN s f dr e PVED BN BN, (B4)

The open-ring approximation (ORA) deletes the last bond giving for the middle site

Pin+1y2(T) = Q;le_'gv(r)[G(n—1)/2(1')]2, (B5)

where G is given by Eq. (8).

Moreover, we can use a variant of the Percus trick appropriate for intamolecular distributions together with Eq. (B4) to
obtain the bulk total intramolecular distribution function, /;#(r). So, by setting e PV = §(r,) (which fixes site 1 at the origin)
and V(r;.;)=0, which is appropriate for a uniform system, we first obtain the bulk intramolecular distribution function for

site i,

. 2 2 2
hg;g(r)zpi(r)Mfdri_le_ﬁ”“_ri—l fa’ri_ze‘ﬁ"“i—l-i—2...fdrze‘ﬁ"“ﬁe_ﬁ’”‘r2|

2 2 2 2
X f dl‘,-+1e_B")“r B r[+1| J drl‘+2€_ﬁn)\rf+1~i+2 . f dl’,,e_ﬁm‘rnfl-"e_ﬁm“r"l . (B6)

Because of the convolution property of Gaussian functions,
this can be written as

rin 7\ lin lin
hiﬂ"g(r) = a hi—l (r)hn—i+l (f") > (B7)
where
32
hi"(r) = <@) exp(— nBN/j). (B8)
. jar

For n odd the total function is then just

(n=1)/2
W) =2 X hhE(r). (B9)
i=1

This converges to the known [38] limiting result as n—

B"(r)  "=* 2B\ exp(- 4B8\r?)

(B10)
n—1 Tr r

For a chain polymer with n odd the total intramolecular dis-
tribution function relative to the middle site is simply
(n—-1)/2

h;hain(r) =2 2 h?n(r) . (Bl 1)
i=1
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